Semantic Frame Induction using Masked Word Embeddings and Two-Step Clustering

نویسندگان

چکیده

近年,動詞の意味フレーム推定タスクでは,推定対象の動詞の文脈化単語埋め込みに基づき,動詞全体で一度にクラスタリングを行う手法がいくつか提案されている.しかし,このような手法には大きく 2 つの欠点が存在する.1 つは動詞の表層的な情報を過度に考慮するため,意味の似た異なる動詞の用例をまとめづらいこと,もう 1 つは同じ動詞の用例がその動詞自身が持つ意味の異なり数以上のクラスタに分割されることである.本論文では,これらの欠点を克服するために,マスクされた単語埋め込みと 段階クラスタリングを用いた動詞の意味フレーム推定手法を提案する.FrameNet を用いた実験を通し,マスクされた単語埋め込みを活用することが動詞の表層的な情報に強く依存したクラスタの構築を抑制し,また,2 段階のクラスタリングを行うことで各動詞の用例が属するクラスタの異なり数を適正化できることを示す.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Morphology Induction Using Word Embeddings

We present a language agnostic, unsupervised method for inducing morphological transformations between words. The method relies on certain regularities manifest in highdimensional vector spaces. We show that this method is capable of discovering a wide range of morphological rules, which in turn are used to build morphological analyzers. We evaluate this method across six different languages an...

متن کامل

Word clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering

The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...

متن کامل

Semantic Structure and Interpretability of Word Embeddings

Dense word embeddings, which encode semantic meanings of words to low dimensional vector spaces, have become very popular in natural language processing (NLP) research due to their state-of-the-art performances in many NLP tasks. Word embeddings are substantially successful in capturing semantic relations among words, so a meaningful semantic structure must be present in the respective vector s...

متن کامل

Semantic Word Clusters Using Signed Spectral Clustering

Vector space representations of words capture many aspects of word similarity, but such methods tend to produce vector spaces in which antonyms (as well as synonyms) are close to each other. For spectral clustering using such word embeddings, words are points in a vector space where synonyms are linked with positive weights, while antonyms are linked with negative weights. We present a new sign...

متن کامل

Clustering of Russian Adjective-Noun Constructions using Word Embeddings

This paper presents a method of automatic construction extraction from a large corpus of Russian. The term ‘construction’ here means a multi-word expression in which a variable can be replaced with another word from the same semantic class, for example, a glass of [water/juice/milk]. We deal with constructions that consist of a noun and its adjective modifier. We propose a method of grouping su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shizen gengo shori

سال: 2022

ISSN: ['1340-7619', '2185-8314']

DOI: https://doi.org/10.5715/jnlp.29.395